Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.487
Filter
1.
Int J Food Microbiol ; 411: 110537, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38150773

ABSTRACT

The maintenance of the balance between oxidised and reduced redox cofactors is essential for the functioning of many cellular processes in all living organisms. While the electron transport chain plays a key role in maintaining this balance under respiratory conditions, its inactivity in the absence of oxygen poses a challenge that yeasts such as Saccharomyces cerevisiae overcome through the production of various metabolic end-products during alcoholic fermentation. In this study, we investigated the diversity occurring between wine yeast species in their management of redox balance and its consequences on the fermentation performances and the formation of metabolites. To this aim, we quantified the changes in NAD(H) and NADP(H) concentrations and redox status throughout the fermentation of 6 wine yeast species. While the availability of NADP and NADPH remained balanced and stable throughout the process for all the strains, important differences between species were observed in the dynamics of NAD and NADH intracellular pools. A comparative analysis of these data with the fermentation capacity and metabolic profiles of the strains revealed that Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans strains were able to reoxidise NADH to NAD throughout the fermentation, mainly by the formation of glycerol. These species exhibited good fermentation capacities. Conversely, Starmerella bacillaris and Metschnikowia pulcherrima species were unable to regenerate NAD as early as one third of sugars were consumed, explaining at least in part their poor growth and fermentation performances. The Kluyveromyces marxianus strain exhibited a specific behaviour, by maintaining similar levels of NAD and NADH throughout the process. This balance between oxidised and reduced redox cofactors ensured the consumption of a large part of sugars by this species, despite a low fermentation rate. In addition, the dynamics of redox cofactors affected the production of by-products by the various strains either directly or indirectly, through the formation of precursors. Major examples are the increased formation of glycerol by S. bacillaris and M. pulcherrima strains, as a way of trying to reoxidise NADH, and the greater capacity to produce acetate and derived metabolites of yeasts capable of maintaining their redox balance. Overall, this study provided new insight into the contribution of the management of redox status to the orientation of yeast metabolism during fermentation. This information should be taken into account when developing strategies for more efficient and effective fermentation.


Subject(s)
Saccharomyces cerevisiae , Wine , Saccharomyces cerevisiae/metabolism , Wine/analysis , NAD/analysis , NAD/metabolism , Glycerol/metabolism , Fermentation , NADP/analysis , NADP/metabolism , Phylogeny , Oxidation-Reduction , Sugars/metabolism
2.
J Biophotonics ; 16(11): e202300021, 2023 11.
Article in English | MEDLINE | ID: mdl-37589180

ABSTRACT

The 325 nm-excited autofluorescence spectra from cancerous and normal renal tissues were collected ex vivo biopsy tissue samples, through an optical fiber probe-based system. Noticeable changes in intensity/wavelength were observed in the fluorescence emissions from endogenous fluorophores such as collagen, Nicotinamide adenine dinucleotide (NADH), Vitamin A (retinol), and flavin adenine dinucleotide, in pathological conditions with respect to the normal state. The energy metabolism involved in clear cell renal cell carcinoma (ccRCC) and chromophobe renal cell carcinoma (chRCC) are reflected in the fluorescence emission band at 445 nm due to bound NADH attributed to enhanced oxidative phosphorylation in chRCC and emission at 465 nm contributed by free NADH showing higher glycolytic action in ccRCC. The principal component analysis and one-way ANOVA effectively discriminate ccRCC from chRCC. It is shown that laser induced fluorescence technique with 325 nm excitation can be a suitable technique for optical pathology and in vivo surgical boundary demarcation in renal cell carcinoma.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/pathology , Pilot Projects , Spectrometry, Fluorescence/methods , NAD/analysis , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/pathology , Lasers , Kidney/diagnostic imaging , Kidney/pathology
3.
Talanta ; 257: 124393, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36858015

ABSTRACT

Reduced nicotinamide adenine dinucleotide (NADH) is a kind of coenzyme and widely works as a biomarker in cancer cells. It plays a crucial role in many cellular metabolic processes, especially NADH in mitochondria is indispensable for the mitochondrial respiration chain that produces ATP. Herein, we designed a fluorescent probe Mito-FCC based on an ethylene-bridging dual-salt structure, in which benzo[e]indolium fluorophore was used as the mitochondria-targeting group and 1-methylquinolinium moiety as the NADH recognition unit. Mito-FCC exhibited high sensitivity and selectivity for NADH with a rapid "turn-on" fluorescence signal. The dual-salt structure endowed the probe with a reliable mitochondria-targeted ability even after the recognition unit was reduced by NADH. With the help of the probe, the fluctuations of endogenous NADH induced by glucose or pyruvate were imaged. Besides, Mito-FCC had a capability to make a distinction between cancer cells and normal cells due that the content of NADH in cancer cells was distinctly higher than that in normal ones. Notably, the visualization of tumor in vivo through monitoring NADH using Mito-FCC was realized successfully. These experimental results showed that Mito-FCC hold a great perspective in study of mitochondrial function and potential diagnosis of cancer diseases.


Subject(s)
Fluorescent Dyes , Neoplasms , Humans , Fluorescent Dyes/chemistry , NAD/analysis , HeLa Cells , Microscopy, Fluorescence/methods , Mitochondria/metabolism , Sodium Chloride , Neoplasms/metabolism
4.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36421150

ABSTRACT

A new spectroelectrochemical two-enzyme sensor system has been developed for the detection of acetaldehyde in wine. A combination of spectroscopy and electrochemistry improves the analytical features of the electrochemical sensor because the optical information collected with this system is only associated with acetaldehyde and avoids the interferents also present in wines as polyphenols. Spectroelectrochemical detection is achieved by the analysis of the optical properties of the K3[Fe(CN)6]/K4[Fe(CN)6] redox couple involved in the enzymatic process: aldehyde dehydrogenase catalyzes the aldehyde oxidation using ß-nicotinamide adenine dinucleotide hydrate (NAD+) as a cofactor and, simultaneously, diaphorase reoxidizes the NADH formed in the first enzymatic process due to the presence of K3[Fe(CN)6]. An analysis of the characteristic UV-vis bands of K3[Fe(CN)6] at 310 and 420 nm allows the detection of acetaldehyde, since absorption bands are only related to the oxidation of this substrate, and avoids the contribution of other interferents.


Subject(s)
Acetaldehyde , Wine , Acetaldehyde/analysis , Wine/analysis , NAD/analysis , NAD/chemistry , NAD/metabolism , Electrochemistry , Oxidation-Reduction
5.
Sci Rep ; 12(1): 16716, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202932

ABSTRACT

Monitoring nicotinamide adenine dinucleotide (NADH) is important because NADH is involved in cellular redox reactions and cellular energy production. Currently, few biosensors quantify NADH in whole blood. However, they still have limitations due to several defects, including poor repeatability, long analysis time, and their requirement of extra sample pretreatment. In this study, we developed electrocatalytic sensors using screen-printed electrodes with a redox-active monolayer 4'-mercapto-N-phenylquinone diamine formed by a self-assembled monolayer of a 4-aminothiophenol (4-ATP). We exhibited their behavior as electrocatalysts toward the oxidation of NADH in whole blood. Finally, the electrocatalytic sensors maintained stability and exhibited 3.5 µM limit of detection, with 0.0076 ± 0.0006 µM/µA sensitivity in a mouse's whole blood. As proof of concept, a polyhexamethylene guanidine phosphate-treated mouse model was used to induce inflammatory and fibrotic responses, and NADH level was measured for 45 days. This work demonstrates the potential of electrocatalytic sensors to analyze NADH in whole blood and to be developed for extensive applications.


Subject(s)
Biosensing Techniques , NAD , Adenosine Triphosphate , Animals , Diamines , Electrochemistry , Electrodes , Mice , NAD/analysis , Oxidation-Reduction
6.
J Orthop Res ; 40(8): 1735-1743, 2022 08.
Article in English | MEDLINE | ID: mdl-34792214

ABSTRACT

From the two metabolic processes in healthy cartilage, glycolysis has been associated with proliferation and oxidative phosphorylation (oxphos) with matrix synthesis. Recently, metabolic dysregulation was significantly correlated with cartilage degradation and osteoarthritis progression. While these findings suggest maturation predisposes cartilage to metabolic instability with consequences for tissue maintenance, these links have not been shown. Therefore, this study sought to address three hypotheses (a) chondrocytes exhibit differential metabolic activity between immaturity (0-4 months), adolescence (5-18 months), and maturity (>18 months); (b) perturbation of metabolic activity has consequences on expression of genes pertinent to cartilage tissue maintenance; and (c) severity of cartilage damage is positively correlated with glycolysis and oxphos activity as well as optical redox ratio in postadolescent cartilage. Porcine femoral cartilage samples from pigs (3 days to 6 years) underwent optical redox ratio imaging, which measures autofluorescence of NAD(P)H and FAD. Gene expression analysis and histological scoring was conducted for comparison against imaging metrics. NAD(P)H and FAD autofluorescence both demonstrated increasing intensity with age, while optical redox ratio was lowest in adolescent samples compared to immature or mature samples. Inhibition of glycolysis suppressed expression of Col2, Col1, ADAMTS4, and ADAMTS5, while oxphos inhibition had no effect. FAD fluorescence and optical redox ratio were positively correlated with histological degeneration. This study demonstrates maturation- and degeneration-dependent metabolic activity in cartilage and explores the consequences of this differential activity on gene expression. This study aids our basic understanding of cartilage biology and highlights opportunity for potential diagnostic applications.


Subject(s)
Cartilage, Articular , Animals , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Flavin-Adenine Dinucleotide/analysis , Flavin-Adenine Dinucleotide/metabolism , NAD/analysis , NAD/metabolism , Oxidation-Reduction , Swine
8.
Anal Biochem ; 633: 114409, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34648806

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is a key metabolic intermediate found in all cells and involved in numerous cellular functions. Perturbances in the NAD metabolome are linked to various diseases such as diabetes and schizophrenia, and to congenital malformations and recurrent miscarriage. Mouse models are central to the investigation of these and other NAD-related conditions because mice can be readily genetically modified and treated with diets with altered concentrations of NAD precursors. Simultaneous quantification of as many metabolites of the NAD metabolome as possible is required to understand which pathways are affected in these disease conditions and what are the functional consequences. Here, we report the development of a fit-for-purpose method to simultaneously quantify 26 NAD-related metabolites and creatinine in mouse plasma, whole blood, and liver tissue using ultra-high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). The included metabolites represent dietary precursors, intermediates, enzymatic cofactors, and excretion products. Sample preparation was optimized for each matrix and included 21 isotope-labeled internal standards. The method reached adequate precision and accuracy for the intended context of use of exploratory pathway-related biomarker discovery in mouse models. The method was tested by determining metabolite concentrations in mice fed a special diet with defined precursor content.


Subject(s)
Liver/chemistry , NAD/analysis , Animals , Chromatography, High Pressure Liquid , Female , Liver/metabolism , Mice , Mice, Inbred C57BL , NAD/metabolism , Tandem Mass Spectrometry
9.
Immunol Lett ; 237: 27-32, 2021 09.
Article in English | MEDLINE | ID: mdl-34245741

ABSTRACT

Although hypothermia has received substantial attention as an indicator of severity in anaphylaxis, it has been neglected from the perspective of whether it could act as a disease-modifying factor in this condition. Here, the impact of naturally occurring (spontaneous) hypothermia on anaphylaxis was evaluated in a murine model of ovalbumin (OVA)-induced allergy. Nonextreme changes in the ambient temperature (Ta) were used to modulate the magnitude of spontaneous hypothermia. At a Ta of 24°C, challenge with OVA intraperitoneally or intravenously resulted in a rapid, transient fall in body core temperature, which reached its nadir 4-6°C below baseline in 30 min. This hypothermic response was largely attenuated when the mice were kept at a Ta of 34°C. The Ta-dependent attenuation of hypothermia resulted in a survival rate of only 30%, as opposed to survival of 100% in the condition that favored the development of hypothermia. The protective effect of hypothermia did not involve changes in the rate of mast cell degranulation, as assessed by the concentration of mast cell protease-1 in bodily fluids. On the other hand, hypothermia improved oxygenation of the brain and kidneys, as indicated by higher NAD+/NADH ratios. Therefore, it is plausible to propose that naturally occurring hypothermia makes organs more resistant to the anaphylactic insult.


Subject(s)
Anaphylaxis/physiopathology , Hypothermia/physiopathology , Anaphylaxis/chemically induced , Anaphylaxis/complications , Anaphylaxis/mortality , Animals , Body Fluids/enzymology , Brain Chemistry , Cell Degranulation , Cell Hypoxia , Chymases/analysis , Cold Temperature , Female , Hypothermia/etiology , Kidney/chemistry , Mast Cells/physiology , Mice , Mice, Inbred C57BL , NAD/analysis , Ovalbumin/toxicity , Oxygen/analysis
10.
Methods Mol Biol ; 2276: 193-202, 2021.
Article in English | MEDLINE | ID: mdl-34060042

ABSTRACT

Brain is one of the most energy-demanding organs. Energy in the form of ATP is produced in brain cells predominantly in oxidative phosphorylation coupled to mitochondrial respiration. Any alteration of the mitochondrial metabolism or prolonged ischemic or anoxic conditions can lead to serious neurological conditions, including neurodegenerative disorders. Assessment of mitochondrial metabolism is important for understanding physiological and pathological processes in the brain. Bioenergetics in central nervous system is dependent on multiple parameters including neuron-glia interactions and considering this, in vivo or ex vivo, the measurements of mitochondrial metabolism should also be complimenting the experiments on isolated mitochondria or cell cultures. To assess the mitochondrial function, there are several key bioenergetic parameters which indicate mitochondrial health. One of the major characteristics of mitochondria is the mitochondrial membrane potential (ΔΨm) which is used as a proton motive force for ATP production and generated by activity of the electron transport chain. Major donor of electrons for the mitochondrial respiratory chain is NADH. Here we demonstrate how to measure mitochondrial NADH/NAD(P)H autofluorescence and ΔΨm in acute brain slices in a time-dependent manner and provide information for the identification of NADH redox index, mitochondrial NADH pool, and the rate of NADH production in the Krebs cycle. Additionally, non-mitochondrial NADH/NADPH autofluorescence can signify the level of activity of the pentose phosphate pathway.


Subject(s)
Brain/metabolism , Membrane Potential, Mitochondrial/physiology , Mitochondria/metabolism , NADP/metabolism , NAD/metabolism , Optical Imaging/methods , Animals , Brain Chemistry , Mitochondria/chemistry , NAD/analysis , NADP/analysis , Oxidation-Reduction , Oxidative Phosphorylation
11.
Methods Mol Biol ; 2276: 259-270, 2021.
Article in English | MEDLINE | ID: mdl-34060048

ABSTRACT

Mitochondrial dysfunction contributes to various injuries and diseases. A mechanistic understanding of how dysfunctional mitochondria modulates metabolism is of paramount importance. Three-dimensional (3D) optical cryo-imager is a custom-designed device that can quantify the volumetric bioenergetics of organs in small animal models. The instrument captures the autofluorescence of bioenergetics indices (NADH and FAD) from tissues at cryogenic temperature. The quantified redox ratio (NADH/FAD) is used as an optical indicator of mitochondrial redox state.


Subject(s)
Flavin-Adenine Dinucleotide/analysis , Imaging, Three-Dimensional/methods , Kidney/chemistry , Mitochondria/chemistry , NAD/analysis , Optical Imaging/methods , Animals , Cryopreservation , Energy Metabolism , Flavin-Adenine Dinucleotide/metabolism , Frozen Sections , Kidney/metabolism , Kidney/pathology , Mitochondria/metabolism , Mitochondria/pathology , NAD/metabolism , Oxidation-Reduction
12.
Chem Commun (Camb) ; 57(57): 7051-7054, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34179901

ABSTRACT

Herein, we describe a CRISPR-Cas12a sensing platform activated by a DNA ligation reaction for the sensitive detection of non-nucleic acid targets, including NAD+, ATP and polynucleotide kinase (PNK). In this design, the DNA ligation reaction triggered by these biomolecules generates DNA duplexes, which can activate the nuclease activity of Cas12a to produce amplified fluorescence signals. As a result, this work provides an alternative strategy to expand the applicability of the CRISPR-Cas system into the detection of non-nucleic acid biomolecules.


Subject(s)
Adenosine Triphosphate/analysis , Biosensing Techniques/methods , CRISPR-Cas Systems/genetics , NAD/analysis , Adenosine Triphosphate/metabolism , DNA/chemistry , DNA/metabolism , DNA Ligases/chemistry , DNA Ligases/metabolism , NAD/metabolism , Polynucleotide 5'-Hydroxyl-Kinase/metabolism , Spectrometry, Fluorescence
13.
Methods Mol Biol ; 2304: 339-346, 2021.
Article in English | MEDLINE | ID: mdl-34028726

ABSTRACT

Fluorescent biochemical sensors allow probing metabolic states in a living cell with high spatiotemporal dynamics. This chapter describes a method for the in situ detection of changes in NAD+ level in living cells using fluorescence lifetime imaging (FLIM).


Subject(s)
Alcohol Oxidoreductases/metabolism , Biosensing Techniques/methods , NAD/analysis , Alcohol Oxidoreductases/chemistry , Cell Line , Diagnostic Tests, Routine , Fluorescence Resonance Energy Transfer , Gene Expression Regulation , Humans , Microscopy, Fluorescence, Multiphoton
14.
Chem Commun (Camb) ; 57(34): 4162-4165, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33908442

ABSTRACT

Two mitochondria-localized Ru(ii) complexes with photo-labile ligands were reported to exert one- and two-photon activatable anticancer activity through a dual-function mechanism, i.e. mitochondrial DNA covalent binding after photo-induced ligand dissociation and photo-catalyzed NADH depletion, thus displaying good activity towards cisplatin-resistant cancer cells under both normoxic and hypoxic conditions.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA, Mitochondrial/drug effects , NAD/antagonists & inhibitors , Nitrogen Dioxide/metabolism , Ruthenium/pharmacology , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Coordination Complexes/chemistry , Coordination Complexes/metabolism , DNA Damage , DNA, Mitochondrial/metabolism , Humans , Ligands , Molecular Structure , NAD/analysis , NAD/metabolism , Photochemical Processes , Photons , Ruthenium/chemistry , Ruthenium/metabolism
16.
Angew Chem Int Ed Engl ; 60(21): 12007-12012, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33730372

ABSTRACT

Reduced nicotinamide adenine dinucleotide (NADH) is a key coenzyme in living cells due to its role as an electron carrier in redox reactions, and its concentration is an important indicator of cell metabolic state. Abnormal NADH levels are associated with age-related metabolic diseases and neurodegenerative disorders, creating a demand for a simple, rapid analytical method for point-of-care NADH sensing. Here we develop a series of NADH-sensitive semiconducting polymer dots (Pdots) as nanoprobes for NADH measurement, and test their performance in vitro and in vivo. NADH sensing is based on electron transfer from semiconducting polymer chains in the Pdot to NADH upon UV excitation, quenching Pdot fluorescence emission. In polyfluorene-based Pdots, this mechanism resulted in an on-off NADH sensor; in DPA-CNPPV Pdots, UV excitation resulted in NADH-sensitive emission at two wavelengths, enabling ratiometric detection. Ratiometric NADH detection using DPA-CNPPV Pdots exhibits high sensitivity (3.1 µM limit of detection), excellent selectivity versus other analytes, reversibility, and a fast response (less than 5 s). We demonstrate applications of the ratiometric NADH-sensing Pdots including smartphone-based NADH imaging for point-of-care use.


Subject(s)
Fluorenes/chemistry , Fluorescent Dyes/chemistry , NAD/analysis , Polymers/chemistry , Quantum Dots/chemistry , Algorithms , Animals , Colorimetry/instrumentation , Colorimetry/methods , Female , Humans , Limit of Detection , MCF-7 Cells , Mice, Inbred BALB C , Mice, Nude , NAD/chemistry , Oxidation-Reduction , Point-of-Care Testing , Smartphone , Spectrometry, Fluorescence
17.
Int J Mol Sci ; 22(3)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573263

ABSTRACT

Nicotinamide riboside (NR), a new form of vitamin B3, is an effective precursor of nicotinamide adenine dinucleotide (NAD+) in human and animal cells. The introduction of NR into the body effectively increases the level of intracellular NAD+ and thereby restores physiological functions that are weakened or lost in experimental models of aging and various pathologies. Despite the active use of NR in applied biomedicine, the mechanism of its transport into mammalian cells is currently not understood. In this study, we used overexpression of proteins in HEK293 cells, and metabolite detection by NMR, to show that extracellular NR can be imported into cells by members of the equilibrative nucleoside transporter (ENT) family ENT1, ENT2, and ENT4. After being imported into cells, NR is readily metabolized resulting in Nam generation. Moreover, the same ENT-dependent mechanism can be used to import the deamidated form of NR, nicotinic acid riboside (NAR). However, NAR uptake into HEK293 cells required the stimulation of its active utilization in the cytosol such as phosphorylation by NR kinase. On the other hand, we did not detect any NR uptake mediated by the concentrative nucleoside transporters (CNT) CNT1, CNT2, or CNT3, while overexpression of CNT3, but not CNT1 or CNT2, moderately stimulated NAR utilization by HEK293 cells.


Subject(s)
Equilibrative Nucleoside Transport Proteins/metabolism , Membrane Transport Proteins/metabolism , Niacinamide/analogs & derivatives , Pyridinium Compounds/metabolism , Ribonucleosides/metabolism , Aging/metabolism , Cytosol/metabolism , Equilibrative Nucleoside Transport Proteins/genetics , HEK293 Cells , Humans , Magnetic Resonance Spectroscopy , Membrane Transport Proteins/analysis , Membrane Transport Proteins/genetics , Metabolomics , NAD/analysis , NAD/metabolism , Niacinamide/analysis , Niacinamide/metabolism , Nicotinamide Mononucleotide/metabolism , Phosphorylation/physiology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pyridinium Compounds/analysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribonucleosides/analysis
18.
Angew Chem Int Ed Engl ; 60(16): 9015-9021, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33470025

ABSTRACT

NAD(H)-utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell-free, ultrahigh-throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per sample) carrying both variant DNA and an immobilised analogue of NAD+ were compartmentalised in water-in-oil emulsion droplets, together with cell-free expression mixture and enzyme substrate, resulting in the recording of the phenotype on each bead. The beads' phenotype could be read out and sorted for on a flow cytometer by using a highly sensitive fluorescent protein-based sensor of the NAD+ :NADH ratio. Integration of this "NAD-display" approach with our previously described Split & Mix (SpliMLiB) method for generating large site-saturation libraries allowed straightforward screening of fully balanced site saturation libraries of formate dehydrogenase, with diversities of 2×104 . Based on modular design principles of synthetic biology NAD-display offers access to sophisticated in vitro selections, avoiding complex technology platforms.


Subject(s)
Flow Cytometry , Formate Dehydrogenases/analysis , High-Throughput Screening Assays , NAD/analysis , Formate Dehydrogenases/metabolism , NAD/metabolism
19.
PLoS One ; 16(1): e0245369, 2021.
Article in English | MEDLINE | ID: mdl-33481867

ABSTRACT

Poly-ADP-ribose-polymerase (PARP) relates to a family of enzymes that can detect DNA breaks and initiate DNA repair. While this activity is generally seen as promoting cell survival, PARP enzymes are also known to be involved in cell death in numerous pathologies, including in inherited retinal degeneration. This ambiguous role of PARP makes it attractive to have a simple and fast enzyme activity assay, that allows resolving its enzymatic activity in situ, in individual cells, within complex tissues. A previously published two-step PARP activity assay uses biotinylated NAD+ and streptavidin labelling for this purpose. Here, we used the fluorescent NAD+ analogues ε-NAD+ and 6-Fluo-10-NAD+ to assess PARP activity directly on unfixed tissue sections obtained from wild-type and retinal degeneration-1 (rd1) mutant retina. In standard UV microscopy ε-NAD+ incubation did not reveal PARP specific signal. In contrast, 6-Fluo-10-NAD+ resulted in reliable detection of in situ PARP activity in rd1 retina, especially in the degenerating photoreceptor cells. When the 6-Fluo-10-NAD+ based PARP activity assay was performed in the presence of the PARP specific inhibitor olaparib, the activity signal was completely abolished, attesting to the specificity of the assay. The incubation of live organotypic retinal explant cultures with 6-Fluo-10-NAD+, did not produce PARP specific signal, indicating that the fluorescent marker may not be sufficiently membrane-permeable to label living cells. In summary, we present a new, rapid, and simple to use fluorescence assay for the cellular resolution of PARP activity on unfixed tissue, for instance in complex neuronal tissues such as the retina.


Subject(s)
Enzyme Assays/methods , Fluorescent Dyes/analysis , Microscopy, Fluorescence/methods , Poly(ADP-ribose) Polymerases/analysis , Retina/enzymology , Animals , Fluorescent Dyes/metabolism , Mice , NAD/analogs & derivatives , NAD/analysis , NAD/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Retina/metabolism , Retinal Degeneration/metabolism , Retinal Degeneration/pathology
20.
Front Immunol ; 12: 765477, 2021.
Article in English | MEDLINE | ID: mdl-34987507

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is an important cofactor in many redox and non-redox NAD+-consuming enzyme reactions. Intracellular NAD+ level steadily declines with age, but its role in the innate immune potential of myeloid cells remains elusive. In this study, we explored whether NAD+ depletion by FK866, a highly specific inhibitor of the NAD salvage pathway, can affect pattern recognition receptor-mediated responses in macrophages. NAD+-depleted mouse bone marrow-derived macrophages (BMDMs) exhibited similar levels of proinflammatory cytokine production in response to LPS or poly (I:C) stimulation compared with untreated cells. Instead, FK866 facilitated robust caspase-1 activation in BMDMs in the presence of NLRP3-activating signals such as ATP and nigericin, a potassium ionophore. However, this FK866-mediated caspase-1 activation was completely abolished in Nlrp3-deficient macrophages. FK866 plus nigericin stimulation caused an NLRP3-dependent assembly of inflammasome complex. In contrast, restoration of NAD+ level by supplementation with nicotinamide mononucleotide abrogated the FK866-mediated caspase-1 cleavage. FK866 did not induce or increase the expression levels of NLRP3 and interleukin (IL)-1ß but drove mitochondrial retrograde transport into the perinuclear region. FK866-nigericin-induced mitochondrial transport is critical for caspase-1 cleavage in macrophages. Consistent with the in vitro experiments, intradermal coinjection of FK866 and ATP resulted in robust IL-1ß expression and caspase-1 activation in the skin of wild-type, but not Nlrp3-deficient mice. Collectively, our data suggest that NAD+ depletion provides a non-transcriptional priming signal for NLRP3 activation via mitochondrial perinuclear clustering, and aging-associated NAD+ decline can trigger NLRP3 inflammasome activation in ATP-rich environments.


Subject(s)
Inflammasomes/immunology , NAD/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Animals , Cells, Cultured , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NAD/analysis , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...